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I .  

SUMMARY 

I 

In this report, an analysis for a complicated Structural System i s  presented, using the 
concepts and analogies of the corresponding electrical system. Any complex system, 
electrical or mechanica1,can be broken down into a series of simple systems and 
connected together, not violating the equilibrium or compatibility conditions. Transfer 
Matrix analysis i s  a computer oriented convenient method for complex systems. 
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ANALYSIS OF GENERAL STRUCTURAL NETWORKS BY MATRIX METHODS 

i 

In order to apply matrix techniques, such as the transfer matrix method, to the analysis 
of complex structural systems, it i s  necessary to break up, or divide, the structure into 
subsystems or components, each of which can be analyzed separately. The loaddeflection 
characteristics of the entire structure, whether statically or dynamically loaded, are then 
found by mathematically connecting al I of the known load - deflection characteristics (or 
solutions) of the individual subsystems in a manner which i s  consistent with the physical 
connections between these subsystems. In this process of reconnecting the subsystems, 
i t  is  apparent that, in effect, the entire complex structure has been replaced by an 
equivalent mechanical network, or circuit, the elements of which are the subsystems. 
The networks may be simple or complex depending upon the complexity of the entire 
structure and the number of subsystems into which this structure i s  divided. 

Mechanical network concepts have been used extensively to analyze elementary structural 
components such as lumped spring-mass systems and continuous beam, ringland plate 
structures which are represented by equivalent lumped spring-mass systems. The primary 
advantage of the mechanical network lies in i t s  analogy to electrical networks which can 
be analyzed with relative ease and for which laws and systematic methods of attack have 
been thoroughly investigated and documented in the literature. In particular, electrical 
circuits can be analyzed by matrix methods through the use of Kirchoff's laws concerning 
the voltages and currents a t  electrical circuit junctions. Similar matrix methods can be 
applied to mechanical networks with the understanding, however, that Kirchoff's laws must 
be generalized to account for the multi-coordinate deflection and load properties of  rnechan- 
ical junctions. 

In an electrical circuit, the voltages a t  a given junction must be the same for a l l  electrical 
branches connected to that junction. AnaIcgousIy, the deflection in a given direction, 
or rotation about a given axis, at  the junction of a mechanical network must be the same 
for a l l  mechanical branches connected to  that junction. However, in the electrical 
circuit, voltage a t  a junction is a simple scalar quantity; whereas, in a mechanical circuit, 
deflection and rotation at  a junction are vector quantities each having three spatial e m -  
ponents. It i s  necessary to generalize one of Kirchoffs electrical laws by stating that at 
a mechanical junction, the vector displacements and the vector rotations must be the same 
for a I I rnechanica I bwnches connected to that junction. This generalization i s  clearly 
based on the compatibility requirements for physical systems. 

Based on the equilibrium requirements for physical systems, an analogous generalization 
can be made with regard to the net loads acting at a mechanical junction. In the electri- 
cal circuit, the sum of a l l  the signed branch currents must be equal to zero, where current 
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i s  also a scalar (algebraic) quantity. For a mechanical junction the sum of a l l  the forces 
in a given direction and the sum of a l l  the moments about a given axis must be equal to 
zero. The forces and moments a t  a mechanical junction are vector quantities each having 
three spatial components. Thus, the generalization of Kirchoff's second law to mechanical 
circuits requires that the sum of a l l  of the branch vector forces and vector moments at a 
mechanical junction be equal to zero. 

With these simple rules, any mechanical network can be described mathematically in a 
matrix form and so analyzed. In general, the structure may be redundant ornonredundant, 
statically or dynamically loaded, or free from applied loads in the dynamic case. To 
illustrate the application of matrix methods to mechanical networks, several examples of 
a rather general nature are discussed below. In the following examples, it i s  assumed 
for simplicity that a l l  of the Ctriirtiires are in a steady vibration state at  some frequency o. 

Consider first the simple two element mechanical system, shown in Figure 1 below, which 
consists of a spring and mass in series. The quantities x and x denote deflection amplitudes 2 
a t  frequency wand F and F denote applied force amp 1 itudes at frequency o. This structural 1 2 

Figure 1: Simple two-element series type structure 

2 



system i s  now divided into two subsystems as shown in Figure 2 below. The junction de- 
flections and loads shown in Figure 2 were chosen so as to automatically satisfy the required 
cornpatability and equilibrium conditions. From elementary physics, the transfer matrices 

x3 

F3 

x1 

1 1/K x1 

0 1 F1 

- - 

r- 

x2 

F2 

x3 

0 x3 1 

- - 
-mw 2 1  F3 

r+ 
x3 x2 

In T 
F 1  K F3 t3 

Figure 2: Segment two element series type structure 

for these two subsystems are 

F2 
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Combining these two equations gives the transfer matrix across the entire system: 

I 

x2 - I 1/K 1 
- 

I 
2 

I l-(w/u ) 2 
-mu F2 I 0 

or 

Transfer 
Matrix 
Equation 

x 1  

F 1  

x1 

where u denotes the system resonant frequency. 
0 

1 

- 2  
mu 

-- 

2 u = K/m. 
0 

The 2 x 2 matrix in (1) i s  called the system transfer matrix. The system flexib X 

equation can be obtained from (1) by solving for X and X in terms of F and F The 1 2 1 2 '  
result is: 

1-(w/o )2  I -1 
I 

I 

0 

1 1 -1 
I 

F1 

F2 

I ,;y matr 

Flexibil i ty 
Matrix (2) 
Equation 

2 
The square matrix in (2) along with the factor (l/mu ) i s  called ... e f lexibi l i ty matrix. 

It i s  to  be noted that the f lexibi l i ty matrix does not exist i f  the system i s  statically loaded; 
i .e.  i f  u = 0. This i s  generally true for a l l  structures unless the structures are so 
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constrained that neither rigid body translations nor rigid body rotations can occur. Where 
there are no permissible rigid body motions permissible, the f lexibi l i ty matrix w i l l  exist 
i n  general. 

b 
The stiffness matrix equation can be obtained from either (1) or (2) by solving for the loads 
F, and F in terms of the deflections X, and X2. The result i s  as follows: 2 

F1 

F2 

‘ 1  

= K  I 
2 1 -1 

x1 

x2 

S t i f f  ness 
Matrix 
Equation 

!3? 

The 2 x 2 matrix in (3), along with the factor K, i s  called the stiffness matrix of the system. 

The above elementary example was presented in order to show, in simple terms, the transfer 
matrix process, and to define the transfer, flexibility,and stiffness matrices. With this 
brief introduction to the basic concepts, it i s  now possible to consider a much more complex 
three-dimensional structural system such as that shown in Figure 3. This system consists of 
two principal subsystem attached a t  the point 2; the one system having an applied force 
vector F a n d  moment vector a at point 1, and the other system having an applied force 
vector G and moment vector N a t  point 3. This system can be more conveniently represented 

Subsystem A 

F 
Y 

Z 
X 

F r, 

G 
Y 

-Y 

Figure 3: Complex structure with two distinguishable 
subsystems attached a t  point 2.  
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now by the series circuit shown in Figure 4. The quantities D, and D 3 represent the dis- 

placement and rotation vectors at points 1 and 3 respectively, while the quantities P, and 

.------c -FA p1 ' I p3 
L 
Dl 

Figure 

P represent the app 3 

4: Network for two subsystems connected in series. 

D =  1 

lc 

D3 

ied force and moment vectors a t  points 1 and 3 respectively. Rep- 

resented as column matrices, the quantities are 

X 
U 

U 

U 
0 

0 

0 

Y 

Z 

X 

Y 
Z 

- 
D3 - X 

V 

V 

V 
Y 

Z 

* X  

lyY 

9, 

6 



where 

X 
F 

F 

F 

M 

M 

M 

Y 

Z 

X 

Y 

Z 

UX' UY' uz = 

exf ey, ez = 

VX' VY' vz = 

v x  f Q y ,  v z  - - 

The network i n  Figure 4 can now be 

generalized junction deflection and 

- 
p3 - X 

G 

G 

G 

N 

N 

N 

Y 

Z 

X 

Y 

Z 

translation components a t  point 1 

rotation components at point 1 

translation components a t  point 3 

rotation components at point 3 

cut as shown in Figure 5, with D 2 representing the 

P 2 representing the generalized junction loads. The 

sign conventions for the loads and deflections at the junction were chosen so that equilibrium 

Ty-Lq- --i p- 
1 p2 p2 I I p3 
L L b L 

Dl D2 D2 D3 

. Figure 5: Segmented series network with intermediate junction 
loads and deflections which satisfy the equilibrium 
and compatibility requirements. 
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and compatibility requirements of the physical system were met. 

If A and B denote the transfer matrices for the two subsystems, then the transfer matrix 
equations for the two subsystems are 

>2 

p2 

D3 

p3 

D l  

p1 

D2 

p2 

combining these equations gives the general transfer matrix for the entire structure, namely 

Genera I Transfer 
Matrix Equation (4) 

where 

C = B A  

It is seen that the general form of (4) i s  similar to that of (1). Hence, following the 
definit ion given for the f lexibi l i ty and stiffness matrix equations for the elementary 
system in Figure 1, comparable equations can be developed immediately from (4) for 
the complex system shown in  Figure 3. To do this, write (4) in the following form 

D3 

p3 

I c1 c2 
= I  I c3 c4 

Dl 

p1 

a 



from which it follows that 

- - 
Dl 

*D3 

= C D + C2P1 D3 1 1  

L Matrix (9) 
I Equation c*-c,c;’c4 , c, c;’ p3 

P3 = C 3 D 1  + C4P1 

Solving (6) for D1? 

-1 P3 - Ci1  c4 P 1  
D, = C3 

Substituting (7) into (6), gives 

D3 = (C2 - C1 Ci ’  C4) P1 + C1 Ci l  P3 

From (7) and (8), the flexibility matrix equation becomes 

Solving (5) for P 1 ?  

-1 -1 
2 3  P1 = C D - C2 C1 D1 

Substituting (10) into (6) and solving for P3 , 

-1 -1 
P3 = (C3 - C4 C2 C1) D1 + C4C2 Dg 

9 



From (10) and (1 1) the general stiffness matrix equation becomes, 

i 

It is  to be noted that the f lexibi l i ty matrix in (9) wi l l  not exist for a statically loaded 
structure, where o = 0, unless the structure i s  constrained against rigid body motions. 
In general though, the flexibil i ty matrix w i l l  exist for a non-zero excitation frequency. 

The structural system in Figure 3 can be generalized to a number of series - connected 
subsystems such as shown in Figure 6. The equivalent network for the structure in Figure 
6 i s  shown in Figure 7. If A, 6, C, D represent the transfer matrices for the four subsystems, 

B 

Figure 6: Series connected structural subsystems. 
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-e A B 

02 1 - D1 

C D * -  

Figure 7: Series mechanical network for the four subsystems 
structure of Figure 6. 

then the transfer matrix from the point 1 to the point 2 i s  given by the equation 

where 
P = generalized load applied a t  point 1. 1 
P = generalized load applied a t  point 2. 2 

D 

D 

= generalized deflection at point 1 .  

= generalized deflection a t  point 2. 

1 

2 

Further generalizations of the structural systems in Figure 6 to n series connected 
substructures are now obvious. 

1 1  



such as i s  shown in Figure 8. As before, the deflections D and D2 and the loads P1 and 1 

1 

p1 

Subsystem A 

C D2 

p2 

Subsystem 6 

Figure 8: Complex structure with para I le I subsystems 

i 
! 
I 

I 
I 

P2 are generalized so that each quantity contains six components. In Figure 9, this 
i structure i s  shown separated into two parts along with the load components for each branch 

a t  each junction. The deflections clearly satisfy the conditions of compatibility. The 
equilibrium requirements a t  each junction are satisfied by the following loads equations 

p, = P i  + P i '  

P2 = P; + Pi' 
(13) 
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. 

Subsystem A 

I- Dl D2 
__t 

P i  

Figure 9: Complex structure branch load components and 
deflections of para1 le1 subsystems. 

If A and B denote the transfer matrices for the two subsystems, then the transfer matrix 

equations are: 

= B  
D2 

P;' 

B 1  1 B1 2 

B2 1 B22 

- - 
Dl 

Pi' 

13 



Equations (13), (14) and (15) represent six equations in eight unknowns so that six of the 
unknowns can be expressed in terms of the other two which act  as independent variables. 

I 
I Solving for D and P in  t e n s  of D and P gives the following transfer matrix equation 2 2 1 1 
1 

K1  1 K1 2 

K2 1 K22 

where 
I 

Dl 

D2 

T1 1 T1 2 

*21 T22 

T12 =[I + A12 B;: I-’ A12 

+ ( B ~ ~  - A ~ ~ ) B ; :  C; + B;;] -l[ A 11 +A 12 B - l  12 B 

Solving for P1 and P in terms of D and D gives the following stiffness matrix equation 2 1 2 
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where 

-’ A - B;: Bll K 1 l  = -A12 11 

-1 
K12 = A12 + B;: 

- A A - l  A -B22B;: Bll K21 = A21 + B21 22 12 11 

+ B22 B;: 
= A A-’ 

K22 22 12 

The key feature of the structures in Figures 3 and 6 i s  that two adjacent subsystems are 
attached a t  a single point. Figure 10 shows a slightly more general case than Figure 3 i n  
the sense that the two distinguishable subsystems are attached a t  two points. These two 
subsystems are shown separately in Figure 11 along with the two intermediate junction 

Figure 10: Complex structure with two distinguishable subsystems 
attached at two points. 
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1 deflections and loads in genetalized form. The junction loads and deflections were chosen 
so as to satisfy the equilibrium and cornpatability requirement. 

Subsystem A 

D3 

Subsystem B D2 
I-- 

D3 

Figure 11: Diagram of two subsystems showing loads and 
de f I e ct i ons at in te rm ed i a te i u n c t i ons . 

From Figure 11 it i s  clear that there are two parallel paths by which the loads can be 
transferred from point 1 to  point 4. In this Sense, the structure shown in  Figure 10 
resembles that of Figure 8. The essential difference i s  that the two load paths within 
the individual subsystems in  Figure 10 are indistinguishable and in general they w i l l  
overlap, or have a common part. The transfer matrix for the complete structure can 
be obtained without diff iculty, however it i s  possible to determine the overall stiffness, 
matrix and transfer matrix for a much more general use with l i t t le additional effort. 

Consider a complex structural system which has two distinguishable subsystems, such 
as shown in Figure 12 ; and assume that there are m generalized applied loads acting 

16 



on each subsystem and n junctions between the two subsystems. It i s  assumed that each 

cD2i 

P 1 1  r Dl i r D 2 i  -p21 p21 + 

P1 - Subsystem - t p 2 2  p22 - Subsystem 

--tp23 '23 t- B 
I 

I I 
I 

A I 
I 
I 

3 i  
-+D 

*'31 

-32 I 

I 

Figure 12: Two subsystems w i t h  n contact points 2nd m 
applied loads on each subsystem. 

of the two subsystems i s  analyzable, and that the stiffness matrices for each subsystem are 
known. The stiffness matrix equation for each subsystem can be written in the form 

t m t n  I 
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Thus, from (19) and (20) , 

*i 

2 i  

Pli = A Dli + B D  

P2i = C Dli + D D  

2 i  
= A I D  + B I D  

'2 i 2 i  

2 i  
+ D' D3i = C' D '3 i 

Subtracting (23) from (22) gives 

(D - A ' )  D + C D,. B' D3. = O  
2i I I 

18 



l 

or 

Substituting (26) into (21) and (24), and writing the result in matrix form, gives the 
overall stiffness matrix equation for the structure: 

where 

1 1  K 

K2 1 

= A - B (D -A ' ) - '  C 

= B (D -A ' ) - '  B' 

-1 

K1 1 

K1 2 

K21 

K22 

= - C' (D - A') C 

= C' (D - A')- ' B' + D' 

The transfer matrix can be obtained from (27) and i s  

19 



It i s  interesting to note that the two subsystems shown in Figure 12 can be thought of as 
being i n  series, i n  a generalized sense, just like the subsystems shown in Figure 3. The 
transfer matrix equation (29) i s  simply a generalization of the analogous equations for 
subsystems which have single junctions with adjacent subsystems. Similarly, multijunction 
subsystems can appear in parallel type networks such as those shown in Figure 13 below. 

I C +  - 
D 

Figure 13: Parallel arrangement of multijunction subsystems. 

However, the arrangement shown in Figure 13 cannot be treated in exactly the same manner 
as the parallel network of Figure 8. The transfer matrix for this system can be obtained 
from the stiffness, f lexibi l i ty or transfer matrices of each of the individual subsystems. 

In the above discussion, it w a s  demonstrated how subsystems can be recombined into 
mechanical networks which mathematically simulate the physical interconnections of 
the structural subsystems. Both single point interconnections and multijunction subsystems 
were considered. 
systems and how these networks can be analyzed. 

It i s  of interest now to consider the network structure of typical sub- 

Large complex vehicle structures such as aircraft, aerospace vehicles, space stations, etc., 
are often composed of several different types of structures such as wings, tai l  assemblies 
with fins, engine and engine mounts, fuselages, cylindrical fuel tanks, solid rocket engines, 
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large inner fuel tanks, instrument bays, space capsules, etc. When segmenting the entire 
structure for analysis, i t i s  generally convenient to divide the structure into i t s  major 
structural components, like those just listed, and then treat these components as sub- 
assemblies of the type referred to in the previous discussion. Each of these components 
can then be analyzed separately with the advantage that appropriate methods of analysis 
can be applied to each different type of subsystem. When this i s  done, it i s  clear that 
the subsystems themselves w i l l  generally be complex structures, the analysis of which w i l l  
usually require a finite element approach. 

The primary advantage of the finite element approach to structural analysis lies in the abil ity 
of the investigator to  divide a complex structure into a large number of small structural 
elements each of which can be analyzed using basic strength of materials and dynamics 
concepts. Thus, the investigator would prefer to use beam segments, flexures, lumped 
masses, springs, dashpots, ring segments and even simple plates and membranes as the 
basic building blocks for representing a complex structure. As a result, it i s  l ikely that 
the above major structural subsystems w i l l  be represented by networks of these elemental 
types of structures. 

Minimum weight requirements for flight vehicles and other aerospace vehicles dictate that 
the majority of the structures must consist of an orthogona I framework of stiffeners overlayed 
with thin skins or light honeycomb skins. Structures of this type w i l l  usually be represented 
by two dimension networks which are fairly regular, having repeative patterns of certain 
basic type circuits. Exceptions to this are high load carrying aerodynamic surfaces such 
as wings, fins, etc. which for sake of accuracy must be represented by three dimensional 
networks. Within a given subsystem, such essentially two dimensional structures may be 
joined to form three dimensional structures such as a bulkhead mounted within a 
cylindrical fuselage shell. However, the essential two dimensionality of much of the 
vehicle structure certainly exists. 

Typically, these stiffened curved shells and flat plates, or the framework itself, w i l l  be 
represented by orthogonal and bridge networks of the type shown in  Figure 14. The 
individual elements in  these networks wi l l  often consist of masses, flexures, rods, beams, 
etc. The subsystems are therefore expected to consist of networks of the type shown in 
Figure 14, and any one subsystem may consist of several such networks interconnected in  
three dimensional box-like arrays. Such systems are readily evaluated by transfer matrix 
methods. 

21 



Figure 14: Typical orthogonal and bridge type mechanical 
mechanical networks of two dimensional structure. 
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In order to analyze a network l ike the bridge circuit in  Figure 14, i t i s  necessary to segment 
the network into fields and rows as i s  shown in Figure 15. Stiffness matrices are then 
computed for the rows and for the fields; and the transfer matrices are determined from these 
stiffness matrices by the matrix manipulation scheme derived earlier in this section. 

Left 

Right 
0 n - 0 Row - 

0 a Left Row " Right 

Field 

n - n 1 - Row 
n b f t  
" Right 

Figure 15: Segmented network structure 
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The transfer matrix for a row gives the deflections and loads on the right side of an entire 
row in  terms of the deflections and loads on the left side of an entire row. Similarly for 
the transfer matrix of a field of vertical and diagonal branches, these concepts are more 
precisely illustrated in Wyle Laboratories - Research Staff report WR65-29, in which the 
transfer matrices are developed in detail for a uniform rectangular plate usin,j the 
Hrennikoff equivalent framework model for the plate . 

In the analysis of two dimensional structures, it i s  often convenient to develop a stiffness 
matrix which gives the loads around the entire edge of a shell or plate in terms of the 
deflections of that edge. This i s  a useful procedure for elastically and inertially coupling 
a plate to stiffeners along the edges of the plate, and for performing a complete and accurate 
dynamic analysis of stiffened plate structures. 
and it i s  shown in that discussion that 1t i s  necessary to perform two transfer matrix analyses 
along the two principal directions of the plate, and to combine the two rectangular plate 
transfer matrices into a single square stiffness matrix. 

This problem i s  discussed in WR 65-29 

Many other networks which are combinations of those discussed or which are distinctly 
different from those shown above can exist, including a l l  of those found in electrical 
engineering such as bridge circuits. 
different types of circuits. It has been demonstrated however, that systematic matrix 
manipulations can be applied to these networks which w i l l  permit the analysis of very 
complex structures. 

No attempt i s  made here to discuss a l l  of the 

As a final comment, it i s  interesting to note how equations for systems resonant frequencies 
can be obtained. Let T denote the overall transfer matrix for the elastic structural 
system shown in Figure 14 
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so that 

If both ends of the structure are free, then P = P = 0 from which it follows that 1 2  

d e t  T21 = 0 both ends free 

This determinant equation i s  a function of the frequency w which appears in the elements 
of Tkl, and hence there wi l l  be certuin discrete values of w which satisfy this equation. 
If bo ends are fixed then D = D = 0 from which it follows that 1 2  

det T = 0 both ends fixed 
12 

If point 1 is fixed and 2 i s  free, then D = P = 0 for which 1 2  

det T22 = 0 Point 1 fixed 
Point 2 fixed 

If point 2 i s  fixed and 1 i s  free, then D = P = 0, for which 2 1  

d e t  T1, = O  point 2 fixed 
point 1 free 

Other, more complex boundary conditions are possible in which one end of the system 
may be fixed with respect to certain displacements while other displacements are un- 
constrained. In such cases, the determinant of some submatrix within the transfer matrix 
w i l l  be equal to zero; and this submatrix may include portions of a l l  four of the T.. 

'I matrices. 
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